

# The Electron Cyclotron Heating & Current Drive (EC H&CD) Power Supply Procurement

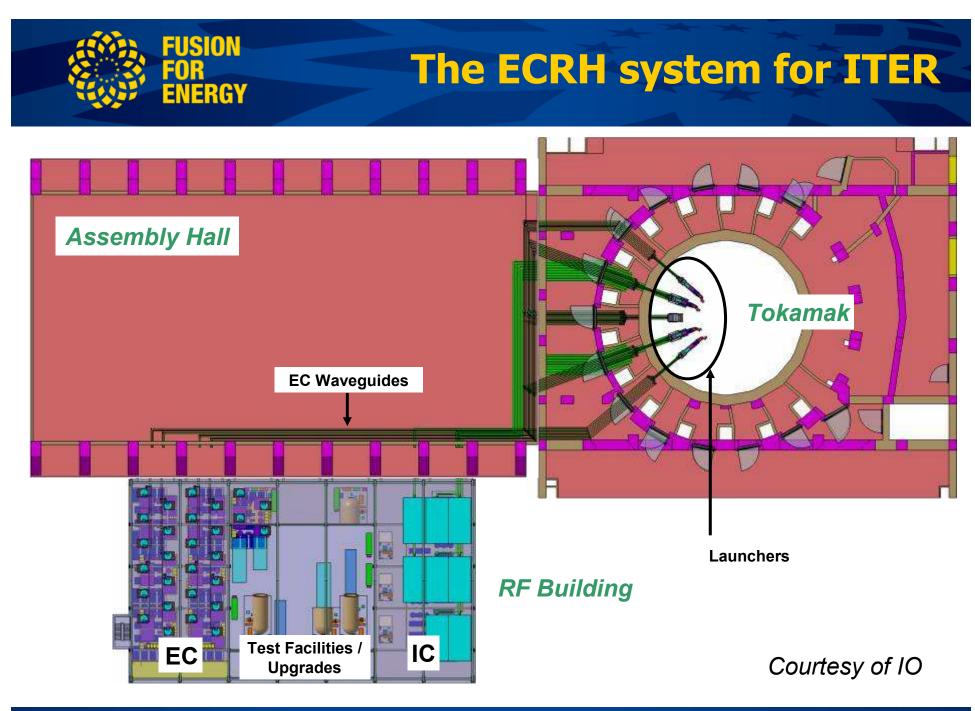
F. Albajar, T. Bonicelli (F4E)



#### **Overview**

- Introduction: the ECRH system for ITER
- The 2001 technical specifications
- The Design Review and new requirements from ITER Organization
- Outline schedule and conclusions

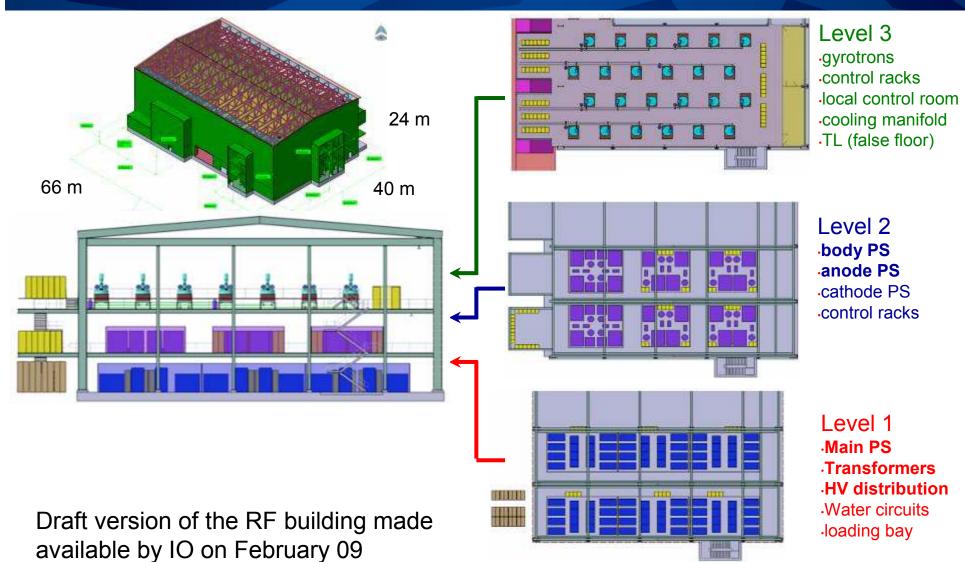


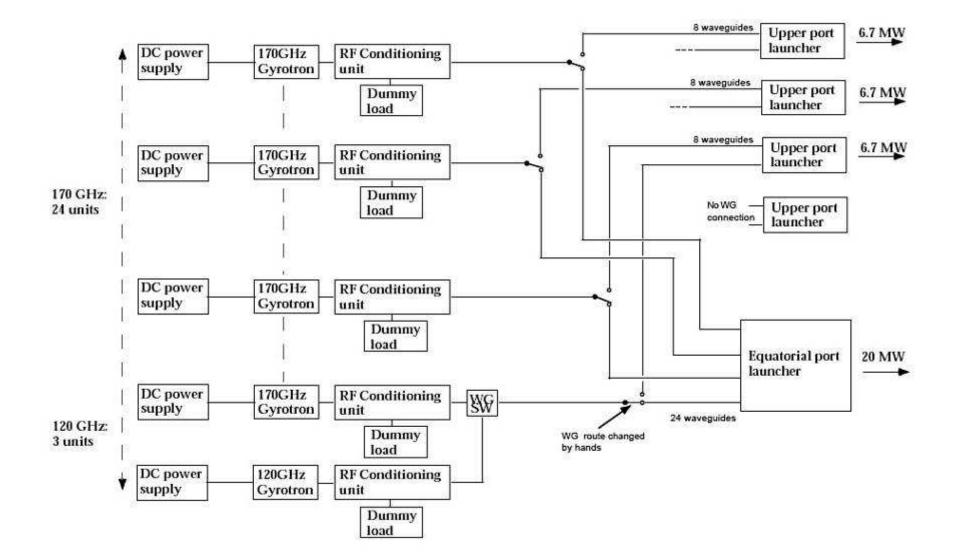

# The ECRH system for ITER

#### **Functionalities (System Requirements Document Oct.08)**

- Heat the plasma (ref.20MW) to achieve Q=10 (fusion power twice the auxiliary heating) and assist in accessing H-mode.
- Provide steady state on-axis and off-axis current drive.
- Control MHD instabilities by localized current drive.
- Assist initial breakdown and heat during current ramp-up.

#### **Proposed additional functionalities:**


Provide modulated ON-OFF power to control NTM stabilities




Info day 27 May 2009, Barcelona



# The ECRH system for ITER



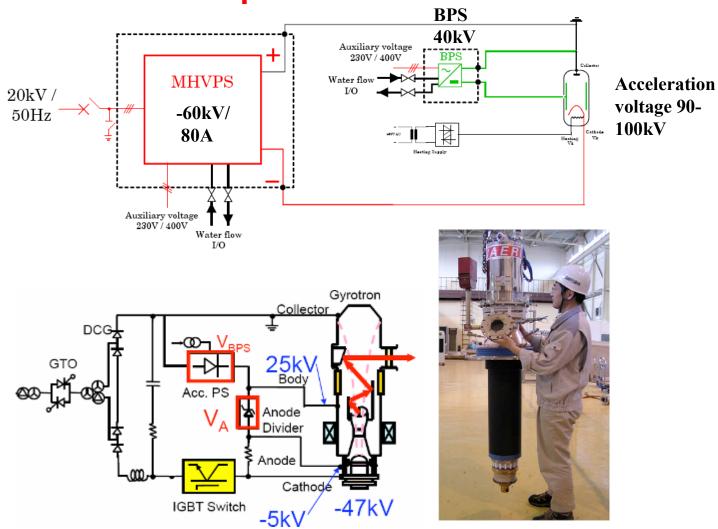


**FUSION** 

FOR ENERGY



## EU Contribution to the ITER ECRH Power Sources: Gyrotrons and Power Supplies


According to N-12 Sharing (2005)

- The European Domestic Agency is responsible for the procurement of 8MW generated RF power at 170GHz (one third)
- The power supplies (Procurement package # 52.P4) feeding the complete H&CD system (start-up system procured by IN DA)
- The IO Procurement Arrangement will be **functional specifications** to be issues by IO

| PP    | Description       | EU  | JA  | RF  | IN |
|-------|-------------------|-----|-----|-----|----|
| 52.P3 | EC Power Sources  | 31% | 31% | 31% | 8% |
| 52.P4 | EC Power Supplies | 92% |     |     | 8% |



#### The main components





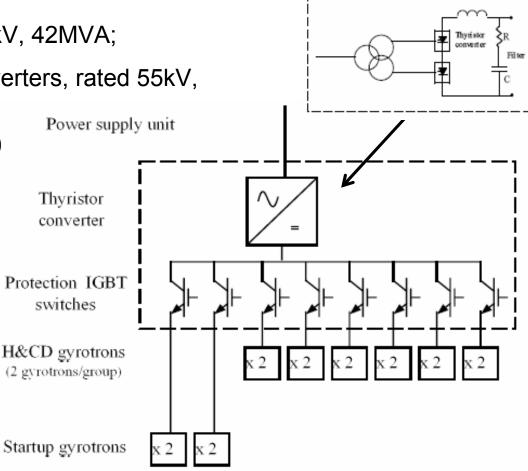
The EU 2MW gyrotron

Info day 27 May 2009, Barcelona



## Scope of the EC H&CD power supply system:

Main HV power supply:

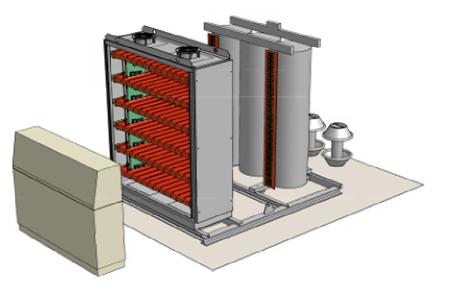

→ step-down transformers 69/28 kV, 42MVA;

→ 2AC/DC 12-pulse thyristor converters, rated 55kV, 540 A each;

→ 2 L-C-R filters, rated 55 kV, 540 A each;

➔ 12 IGBT switches and diodes, rated 55 kV, 90 A each;

➔ 2 protection crowbars, rated 55kV;






## Scope of the EC H&CD power supply system:

Body and anode power supply and others:

- → 24 body power supplies, 50 kV, 0.1A;
- → 24 anode power supplies, 50 kV, 0.1A;
- → 1 dummy load (75V, 90A, 15s every 15 minutes);
- → cubicles
- → control, interlock
- ➔ quality assurance
- ➔ installation and on-site acceptance tests
- → spare parts





#### **Requirements:**

| Descenter                                                 | X-l                             |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Parameter                                                 | Value                           |  |  |  |  |  |
| Number of EC H&CD PS units                                | Design dependent                |  |  |  |  |  |
| Cathode voltage range                                     | - 45 ÷ - 55 kV                  |  |  |  |  |  |
| Accuracy of the cathode voltage regulation (including     | TBD (max. ± 3%)                 |  |  |  |  |  |
| ripple, overshoot and undershoot)                         |                                 |  |  |  |  |  |
| Nominal cathode current                                   | 90 A                            |  |  |  |  |  |
| Maximum power per pair of gyrotrons                       | 5 MW                            |  |  |  |  |  |
| Acceleration voltage range                                | 0 ÷ + 45 kV                     |  |  |  |  |  |
| Acceleration voltage ripple in steady state               | TBD (included between ± 0.2     |  |  |  |  |  |
|                                                           | - 0.5% of the maximum value)    |  |  |  |  |  |
| Maximum acceleration current                              | 0.1 A                           |  |  |  |  |  |
| Anode voltage range                                       | 0 ÷ - 50 kV                     |  |  |  |  |  |
| Accuracy of the anode voltage dynamic control             | TBD (included between $\pm 0.2$ |  |  |  |  |  |
|                                                           | - 0.5% of the maximum value)    |  |  |  |  |  |
| Anode voltage modulation range                            | 30 ÷ 100%                       |  |  |  |  |  |
| Maximum anode voltage modulation frequency                | 10 kHz                          |  |  |  |  |  |
| Maximum anode current                                     | 0.1 A                           |  |  |  |  |  |
| Fault energy (short circuit energy in case of load fault) | $\leq$ 10 J                     |  |  |  |  |  |

#### Main interfaces

- Building – space allocation – criteria for installation, operation and maintenance

- Other power supplies of the EC system (e.g. main & body)

- EC Control system
- Cooling (air and water)

- Gyrotron (cabling, load characteristics, arcs)

- ITER Pulsed Power Supply network at 22kV (reactive, effect of loads)



# The design review process

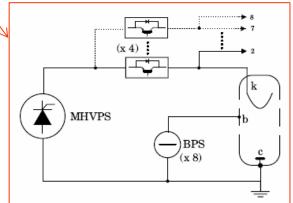
#### Design Review of the EC Power Supply system (2005-2009)

#### **Proposed new requirements**

- To be adapted to three different gyrotron suppliers → different interfaces (anode power supply)
- up to 1kHz for ON/OFF modulation, up to 5kHz for partial modulation up to 50-70% (also impact on the collector)
- Fractional power of gyrotrons (1.2-1.4MW)
- Further modularity & reliability of the system: 1MHPVS feeds two gyrotrons
- Compatible with fast shutdown

#### **Baseline design**

- Unique gyrotron design
- Baseline design: 30kV/1kHz (BPS)
- Nominal gyrotron power 1MW (or 2MW)
- 2 thyristor-based power supplies for 12 gyrotrons (12MW) each
- Detailed specs on gyrotron load characteristics, dynamic behaviour, etc. not specified




# The design review process

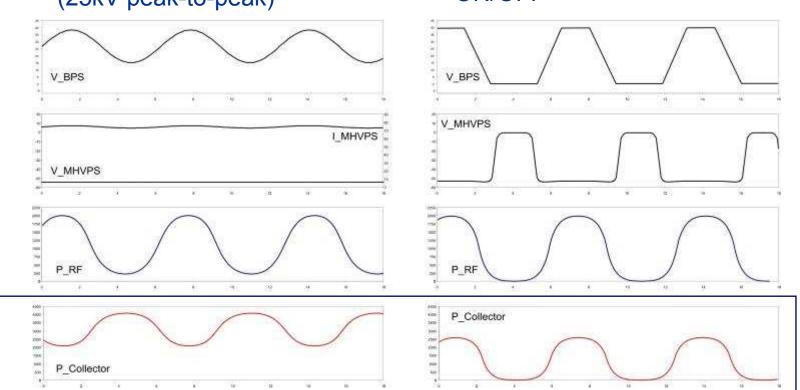
#### Comparison between <u>PSM</u> and <u>thyristor</u> concepts



(ITER Task Agreement with EU-DA / EFDA task 2007)



- Both options are able to fulfill ITER 2001 specifications
- Cost neutral (~10%) compared to 3 thyristor PS to cope with 3 gyrotron suppliers
- PSM offers intrinsic advantages in terms of:
  - <u>Reliability/availability</u>: Redundancy of modules
  - > <u>Performance</u>: Common voltage to 1/2 gyrotrons instead of 4/8 in a thyristor
  - Flexibility during commissioning and re-conditioning of gyrotrons
  - Fast switch-off and modulation capabilities (~10µs) and ON/OFF modulation: HVSS @ full current & nominal voltage (?)
  - Efficiency >97% (relevant for CW operation)
  - <u>Saving reactive power</u>: A power factor higher than 95% at any point of the operation area;




# The design review process

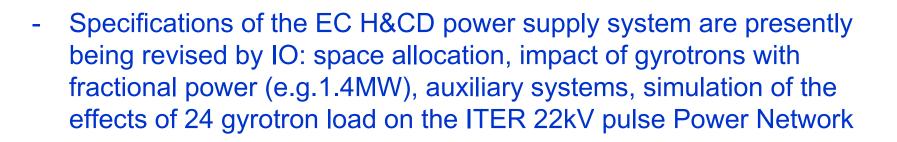
- ON/OFF

#### Two possible ways for modulating (up to 5kHz)

- BPS output voltage (25kV peak-to-peak)



In the 2001 ITER baseline design the modulation frequency was 1kHz (DCR under study); ON/OFF modulation not foreseen


Info day 27 May 2009, Barcelona



# **Tentative outline schedule**

|                                            | 2009 | 2010 | 2011 | 2012   | 2013          | 2014  | 2015       | 2016    | 2017      | 2018      | 2019       | 2020    | 2021 |
|--------------------------------------------|------|------|------|--------|---------------|-------|------------|---------|-----------|-----------|------------|---------|------|
| Procurement of PS for ITER EC H&CD system  |      |      | 0.27 | 01 mm  | -             |       |            | Series  | Prod'n    |           |            |         |      |
| Signature of the Procurement Arrangements  |      |      | •    | Jun-11 |               |       |            |         |           |           |            |         |      |
| Call-for-Tender of main ITER contracts     |      |      |      |        | 60 c.<br>2 c. | Call- | fo-Tender  |         |           |           |            |         |      |
| Detailed Design of the power supply system |      |      |      |        |               |       | Detailed D | esign   |           |           |            |         |      |
| Procurement 1st set for ITER-2018          |      |      |      |        |               | 1     | -          |         | -         |           |            |         |      |
| Procurement of Long Lead Comp'ts           |      |      |      |        |               |       | - F        | rocuren | nent Long | Lead Co   | mp'ts      |         |      |
| Fabrication of Set#1 of BPS                |      |      |      |        |               |       | •          | Set#    | 1 BPS     |           |            |         |      |
| Fabrication of Set#1 of MHVPS              |      |      |      |        |               |       | -          | - s     | Set#1 MH  | VPS       |            |         |      |
| Inst'n & Tests & Comm'g BPS&MHVPS          |      |      |      |        |               |       |            |         | Inst'n8   | Comm'g    |            |         |      |
| Ready for ECRH Integrated Comm'g           |      |      |      |        |               |       |            |         | ٠         |           |            |         |      |
| Procurement rest of PS for ITER-2021       |      |      |      |        |               |       | 12         |         |           |           | 10         |         |      |
| Procurement of Long Lead Comp'ts           | 1    |      |      |        |               |       | 1          | -       | Procur    | rement Lo | ong Lead   | Comp'ts |      |
| Fabrication of Set#2 of MHVPS              |      |      |      |        |               |       | 1 9        | •       | Set/      | 2 BPS     |            |         |      |
| Fabrication of Set#3 of MHVPS              |      |      |      |        |               |       |            | •       |           | Set#3 BF  | <b>P</b> S |         |      |
| Fabrication of Set#4 of MHVPS              |      |      |      |        |               |       |            |         |           | Set       | #4 BPS     |         |      |
| Fabrication of Set#5 of MHVPS              |      |      |      |        |               |       |            |         | 4         | -         | Set#5 E    | BPS     |      |
| Fabrication of Set#2 of BPS                | 1    |      |      |        |               |       |            | -1      |           | Set#2 MH  | VPS        |         |      |
| Fabrication of Set#3 of BPS                |      |      |      |        |               |       |            |         | •         | Set#3     | MHVPS      |         |      |
| Fabrication of Set#4 of BPS                |      |      |      |        |               |       |            |         |           | S         | et#4 MH\   | /PS     |      |
| Fabrication of Set#5 of BPS                | 1    |      |      |        |               |       |            |         |           | 4         | Set#5      | MHVPS   |      |
| Inst'n & Tests & Comm'g BPS&               |      |      |      |        |               |       |            | 17      | •         | 40        | Inst'n     | &Comm'g | i -  |
| Ready for ECRH Integrated Comm'g           |      |      |      |        |               |       |            |         |           |           | •          |         |      |





Summary

- ITER Procurement Arrangement planned to be signed in 2011.
- Modulation capabilities (frequency, accuracy of the voltage waveform, amplitude of modulation) are critical for the design of the PS system
- Technological solution for ITER subject to the specifications of PS & gyrotrons, space allocation, power modulation and dynamic requirements.



# Thanks for your kind attention.

Acknowledgement to all the EURATOM contributing Associations, Institutes and Companies.