RSS Feeds Twitter LinkedIn YouTube Flickr
Media Corner
04 June 2014

F4E and Assystem to deliver remote handling system for ITER divertor

3D image of the remote handling system for ITER divertor – photo credit: Assystem

ITER’s high tech remote handling system has entered its most decisive phase so far thanks to a multimillion deal signed between F4E and Assystem, a leader in innovation and engineering consultancy. All activities ranging from design, manufacturing, delivery, on-site integration, commissioning and final acceptance tests for ITER’s divertor will be covered through this contract as it unfolds progressively. Its value is estimated in the range of 40 million EUR and it will involve some of the pioneers from the area of remote handling in Europe such as the UK’s Culham Centre for Fusion Energy (CCFE) and Soil Machine Dynamics Ltd (SMD) together with Finland’s Technical Research Centre (VTT) and theTampere University of Technology (TUT). Through this contract, two multifunctional movers and two toroidal movers will be manufactured.

F4E Director, Professor Henrik Bindslev, explained that “this contract is a turning point for ITER’s remote handling system because it will lead us to production mode. We have managed to bring together industry, fusion laboratories, SMEs and research centres under one contract that will unleash their potential and help them advance further in their domain”. Commenting on the award, Peter Higton, Assystem’s Energy and Nuclear UK Managing Director who has led the team effort, said: “We are very pleased to have been selected for this prestigious project. This contract is recognition that our capabilities and reputation for delivering high standards of innovative engineering, quality and safety are valued by our customers. We look forward to working with F4E and our partners to deliver these high tech components”.

What is remote handling?
Remote handling helps us to perform manually a task without being physically present at the location it is carried out. It is widely used in space exploration missions, underwater or ground operations. The system brings together high tech robotics, advanced technological tools, powerful computers and virtual reality platforms. A high level of intuition and intelligence are inbuilt within the system which is handled by a human operator with extreme dexterity because of the degree of millimetric precision that is required.

Why ITER needs a remote handling system for the divertor?
When the ITER machine is operational some of the components in the vessel will be exposed to radioactivity. Therefore, any maintenance, inspection and repair will be conducted through remote handling. The ITER divertor, located in the lower part of the ITER machine, will consist of 54 divertor casettes measuring 3,4m x 1,2 m x 0,6m and weighing 10 tonnes each. It is in this part of the machine that the superhot plasma temperature will be most felt. The divertor casettes will form the machine’s massive ashtray where the hot ashes and impurities will fall in. It is foreseen that these components will be replaced three times during the lifetime of the ITER machine.

How will the ITER divertor remote handling work?
The 54 divertor cassettes will be installed by movers through three entry points, known as ports. If they need to be removed, they will be detached, unlocked from the ITER vessel, placed into a container and get transported.


Background information:

To view the film on remote handling click here 

Press release: F4E and Assystem to deliver remote handling system for ITER divertor: EN - FIFR

MEMO: F4E and Assystem to deliver high tech remote handling system for ITER divertor: ENFIFR

Back